学 术 讲 座
主题:Reference-free Learning with Multiple
Metagenomic Samples
主讲人:Wenxuan Zhong (美国佐治亚大学统计系教授)
时间:2017年07月05日 (周三)上午 10:00-11:30
地点:学院津南校区计算机与控制工程学院(信息东楼)523会议室
Abstract: The major goals of metagenomics are to identify and study the entire collection
of microbial species in a set of targeted samples through sequencing bulk DNA
extracted directly from the samples. So far, however, there has not been an
effective reference-free tool for dissecting the complex information revealed
by the sequencing. In this talk, I will present a statistically based algorithm
to simultaneously identify microbial species and estimate their abundances in
multiple metagenomic samples without using any reference genome. Compared with
existing reference-free methods that are mostly based on k-mer distributions,
this new approach can achieve a higher species identification accuracy, and is
particularly powerful when the sequencing coverage is low. We demonstrate the
performances of the new method through both simulation and real metagenomic
studies.
Biography:钟文瑄,现任美国佐治亚大学统计系副教授(Department
of Statistics, University of Georgia),大数据分析研究室主任,致力于发展降维方法以及这些方法在机器学习、生物信息等学科问题中的应用,近年来主要研究发展大数据降维的算法及其理论基础。钟文瑄教授本科毕业于学院数学系,获美国普渡大学统计学博士,哈佛大学博士后。2007年8月起,任职于美国伊利诺伊大学香槟分校(University of Illinois at
Urbana-Champaign)助理教授;2014年被美国佐治亚大学引进. 钟文瑄教授在《Journal of Royal Statistical
Society Ser B》,《Journal of American
Statistical Association》等国际顶尖期刊上发表多篇论文,形成了极高的影响力。钟文瑄教授的研究被英特尔(Intel)公司,匹兹堡超级计算中心评价为大数据分析的突破性工作;钟文瑄教授担任学术期刊Statistica Sinica等的副主编。